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Abstract—Hyperspectral images (HSIs) are often degraded by a
mixture of various kinds of noise in the acquisition process, which
can include Gaussian noise, impulse noise, dead lines, stripes, and
so on. This paper introduces a new HSI restoration method based
on low-rank matrix recovery (LRMR), which can simultaneously
remove the Gaussian noise, impulse noise, dead lines, and stripes.
By lexicographically ordering a patch of the HSI into a 2-D matrix,
the low-rank property of the hyperspectral imagery is explored,
which suggests that a clean HSI patch can be regarded as a
low-rank matrix. We then formulate the HSI restoration problem
into an LRMR framework. To further remove the mixed noise,
the “Go Decomposition” algorithm is applied to solve the LRMR
problem. Several experiments were conducted in both simulated
and real data conditions to verify the performance of the proposed
LRMR-based HSI restoration method.

Index Terms—Go Decomposition (GoDec), hyperspectral image
(HSIs), low rank, restoration.

I. INTRODUCTION

HILE hyperspectral imaging sensors have experienced
significant success, hyperspectral images (HSIs) col-
lected in practice often suffer from various annoying degrada-
tions, e.g., noise contamination, stripe corruption, and missing
data, due to the sensor, photon effects, and calibration error
[11, [2]. As a result, not only the visual appearance but also
the applications of these images, which include urban planning,
mapping, agriculture, forestry, and so on, are severely influ-
enced. Therefore, as a preprocessing of the image application,
HSI restoration is an active and challenging research area.
To date, many different denoising methods have been pro-
posed for the restoration of HSIs. Traditional denoising meth-
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ods treat each band of the HSI as a gray-level image and restore
them separately. More advanced denoising techniques mainly
use the spectral information of the HSI and have achieved
good results. For example, Letexier and Bourennane [3] con-
sidered the HSI data set as a third-order tensor and introduced
a generalized multidimensional Wiener filter to denoise the
HSIs. Liu et al. [1] developed a powerful multilinear algebra
model named parallel factor analysis (PARAFAC) to denoise
HSIs, and it has been shown that the PARAFAC model is an
efficient denoising method for the removal of Gaussian noise
from HSIs.

Recently, researchers have paid most of their attention to
the denoising methods that use the spatial and the spectral
information together, and these approaches have made signif-
icant progress. Othman and Qian [4] proposed a hybrid spatial—
spectral derivative-domain wavelet shrinkage model, which
benefits from the dissimilarity of the signal regularity in the
spatial and spectral dimensions of the HSIs. Karami et al. [5]
evaluated a new method for the noise reduction of HSIs, based
on a genetic algorithm and kernel hierarchical nonnegative
Tucker decomposition. This method also exploits both the spec-
tral and the spatial information in the images. In [6], a multiple-
spectral-band conditional random field model was proposed by
Zhong and Wang to simultaneously model and use the spatial
and spectral dependences in a unified probabilistic framework.
Based on a maximum a posteriori framework, Chen et al. [7]
introduced a spatial-spectral domain mixing prior model which
takes advantage of the different properties of HSIs in the spatial
and spectral domains, and Yuan et al. [8] proposed an HSI
denoising algorithm employing a spectral-spatial adaptive total
variation (SSAHTV) model. In the SSAHTV algorithm, the
spectral noise differences and spatial information differences
are both considered in the process of the noise reduction. In
[9], the nonlocal similarity and spectral—spatial structure of the
hyperspectral imagery were introduced into the sparse repre-
sentation framework. In addition, principal component analysis,
wavelet shrinkage, and anisotropic diffusion have also been
adopted for HSI noise removal [10]-[13].

To sum up, most of these restoration methods are based on
some specific prior knowledge of the image noise, and they use
the spectral or spatial information of the HSIs to recover the
current pixel or pixels (image patch). Under the limitation of
the prior knowledge, most of the methods mentioned earlier can
only remove one or two kinds of noise. However, for real-world
HSIs, there usually exists a combination of several different
types of noise, e.g., Gaussian noise, impulse noise, dead pixels
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or lines, and stripes. To the best of our knowledge, few of
the restoration methods mentioned earlier can simultaneously
remove all these types of noise.

In recent years, low-rank matrix approximation has emerged
as a powerful tool for image analysis, web search, and com-
puter vision [14]-[17]. It describes the problem of finding
and exploiting low-dimensional structures in high-dimensional
data. Unlike the traditional image restoration methods, the
prior knowledge in low-rank matrix approximation-based im-
age restoration is that some components of the clean image are
regarded as low rank, and the aim is to remove the various
noise types in the contaminated image. Ji et al. [18], [19]
introduced this theory to video restoration by formulating the
video restoration problem as a low-rank matrix completion/
recovery problem. For each reference patch of the selected
video frame, a patch matching algorithm is used to search the
similar patches in the spatiotemporal domain. These similar
patches are lexicographically formulated into a matrix, which
can then be decomposed into a low-rank matrix term denoting
the clean patches and a sparse matrix term denoting outliers.
Li et al. [20] adopted a similar patch matching algorithm for
natural images to determine the low-rank parts of a clean image
and used spatially adaptive iterative singular value thresholding
to recover the clean parts from the noisy image. As to HSI
restoration, the main challenge is the determination of the low-
rank components and the formation of the low-rank matrix
approximation-based image restoration model.

In this paper, we propose an HSI restoration technique on
the basis of low-rank matrix recovery (LRMR), which can
simultaneously remove Gaussian noise, impulse noise, dead
pixels or lines, and stripes. The main contributions of this
paper are the exploration of the HSI low-rank property and the
application of LRMR to the HSI restoration process. The main
ideas of this work can be summarized as follows.

1) HSI data are rearranged as a 2-D matrix, and the low-
rank property of the image matrix is explored. Based on
the low-rank prior knowledge of the clean HSI and the
sparsity property of the non-Gaussian noise [18], [19]
(including impulse noise, dead lines, and stripes), we
build our HSI restoration model based on LRMR.

2) Both the “Go Decomposition” (GoDec) [21] and the
augmented Lagrange multiplier (ALM) numerical opti-
mization algorithms are utilized to solve the proposed
restoration model, and the experimental evaluations of the
two methods for restoring HSI are provided.

3) The proposed LRMR method provides a new perspective
for HSI restoration. The experimental results indicate that
it outperforms the other state-of-the-art methods, not only
in the case of Gaussian noise only but also in the case of
a mixture of several types of noise.

The rest of this paper is organized as follows. In Section II,
the LRMR model and the low-rank property of the HSI are
introduced. After that, the HSI restoration method based on
LRMR is presented in Section IIl. In Section IV, both the
simulated experiment and real data experiments are described
and analyzed, followed by the conclusions in Section V.
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II. LOW-RANK PROPERTY OF HYPERSPECTRAL IMAGERY
A. LRMR Model

The LRMR model was first proposed by Wright et al. [17]
and is idealized as a “robust principal component analysis”
(RPCA) problem. Assuming that a low-rank matrix L € R™*"
is corrupted by a sparse error matrix s € R™*™  then the
observed data matrix D € R”*™ can be decomposed as the
sum of a sparse matrix and a low-rank matrix, i.e., D = L + S.
The ideal RPCA problem can be described as follows: Given
the observed data matrix D, the low-rank matrix L and the
sparse error matrix S are unknown, and the goal is to recover
L. The formulation of this optimization problem is [17]

ming, g rank(L) 4+ A||S|lo  s.t D=L+S. (1)
Unfortunately, (1) is a highly nonconvex optimization problem,
and no efficient solution is known. We can obtain a tractable
optimization problem by relaxing (1) and replacing the £y-norm
with the /1 -norm and the rank with the nuclear norm [22]-[24],
yielding the following convex surrogate:

minL,s ||L||*+/\||S||1 s.t D=L+S 2)
where A is the regularization parameter used to balance the
relative contribution between the nuclear norm and the /1 -norm.
Candes et al. [14] have proven that, when the rank of the
matrix L and the sparsity and distribution of S obey certain
conditions, there is a high probability of recovering the low-
rank matrix L and sparse matrix S.

On the basis of Candes and Plan’s work in [25], Zhou et al.
[26] improved the model of RPCA and studied the problem
of recovering the low-rank matrix (the principal components)
from a high-dimensional data matrix corrupted by both small
entrywise noise and gross sparse errors. The revised mea-
surement model assumes that D = L + S + N, where D, L,
and S are as introduced earlier and N is the noise term, i.e.,
independent and identically distributed Gaussian noise on each
entry of the matrix. The optimization problem of this model is
introduced as

ming, s ||Lll« +AlS]1 st |D-L-S|r<d )
where ¢ is a constant related to the standard deviation of random
noise IN. Zhou and Tao [21] proposed an equivalent formulation
of (3)

ming s [|[X—L-S|% st rank(L)<r card(S)<k (4)
where r and &, which stand for the upper bound of the rank of
L and the cardinality of S, are set to be the known information.
In this paper, a revised model which considers Gaussian noise
is utilized.

B. Low-Rank Property of Hyperspectral Imagery

As described previously, the baseline of the low-rank-based
restoration task is the exploration of the low-rank components.
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Fig. 1. Formulation of the low-rank matrix from an HSI patch.

Differing from the patch matching algorithm used in natural
image/video restoration [18]-[20], which exploits the redun-
dancy in the spatial and temporal domains, the high correlation
of the spectral information is adopted to formulate the low-rank
components here. Fig. 1 shows the matrix representation of a
clean HSI patch. Assuming that we have an original HSI cube
u, denoted by (a) in Fig. 1, the size of u is M X N x B, in
which M represents the width of the image, N stands for the
height of the image, and B is the number of spectral bands.
Select a subcube p; ; of size ¢ X ¢ X B centered at the spatial
position (¢, 7). If we represent the kth band of the subcube
Pi,j as a vector p; jk € R?" by lexicographically ordering
all its columns, we obtain a 2-D matrix P; ; of size ¢* x B
as follows:

P;j=(Pij1,Pij2 " Pijp) )
Next, we investigate the low-rank property of P; ;.

The low-rank property of an HSI can be exploited from
the perspective of a linear spectral mixing model [27], [28].
As known, there exist high correlations among the spectral
signatures (rows of P; ;), as each spectral signature can be
represented by a linear combination of a small number of pure
spectral endmembers, which is known as the linear spectral
mixing model. Supposing the upper bound of the number of
pure spectral endmembers for the HSI patch is r, then P, ;
can be decomposed as P; ; = MHT”, where H € Rf” is the
matrix whose columns contain pure spectral endmembers and
M e Rf " is the abundance matrix. As the upper bound value
of the number of endmembers 7 is usually relatively small,
then the rank of P; ; is bounded, i.e., rank(P; ;) < r, which
suggests the low-rank property of the matrix P; ;.

III. LRMR-BASED HSI RESTORATION METHOD
A. HSI Degradation Model

We assume that the HSI is corrupted by four kinds of noise:
Gaussian noise, impulse noise, dead pixels or lines, and stripes.
The noise degradation model of the HSI can be written as

d=u+s+n (6)

where u is the clean HSI, as shown in Fig. 1(a); d is the
observed degradation image; s denotes the mixture of impulse
noise, dead pixels or lines, and stripes; and n stands for the
Gaussian noise. In this degradation model, the images d, u, s,
and n are of the same size of M x N x B.
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B. LRMR-Based HSI Restoration Model

In this paper, we divide the HSI into patches and restore
each patch sequentially, which can effectively preserve the local
details [29], [30]. The size of each patch is ¢ X ¢ x B. For a
patch centered at the pixel (i, 7), the image degradation model
is expressed as follows:

dij = Uij + Sij+Nij %

where d; ;, u; j, s;, and n; ; are the 3-D subcubes of d, u,
s, and n, respectively. Rearrange d; ;, u; j, s; j, and n; ; into
2-D matrices according to the process shown in Fig. 1, and
denote them as D, ;, L;;, S;;, and N; ;, respectively. The
corresponding image degradation model is

DiJ‘ = Li,j + Si,j + NiJ (8)

where the matrix L; ; represents the clean HSI patch, the matrix
S; ; is denoted as the mixture of impulse noise, dead lines,
and stripes, and the noise matrix N; ; is the representation of
the Gaussian noise. With the low-rank property of the clean
HSI, the matrix L; ; is low rank. Clearly, as the impulse noise,
dead pixels or lines, and stripes only corrupt some parts or
some bands of the HSI, therefore, the matrix S; ; is sparse. The
Gaussian noise matrix N; ; is of a small level and impacts all
the pixels.

With the similarity between the HSI degradation model in
(8) and the LRMR measurement model, it is natural for us to
apply sparse and low-rank matrix decomposition to the noisy
matrix D; ; and obtain the clean HSI patch L; ;. Thus, the
restoration process for the patch centered at (4, j) of the HSI
is accomplished. After processing all the patches of the HSI,
we synthesize the restored image from these clean patches.
In this paper, the image patches are sampled with overlapping
regions, and most of the pixels are covered by several restored
patches. The value of each pixel in the HSI is then determined
by taking the average of the restored patches at this pixel, which
will suppress the possible artifacts in the neighborhood of the
boundaries of patches.

C. GoDec Algorithm

In recent years, many LRMR optimization algorithms have
been proposed. For example, Lin et al. [31] developed and com-
pared two complementary approaches for solving model (2).
The first is an accelerated proximal gradient algorithm directly
applied to the primal, and the second is a gradient algorithm
applied to the dual problem. Yuan and Yang [32] proposed
the alternating direction method for solving problem (2), by
taking full exploitation to the high-level separable structure of
the convex relaxation problem. Recently, Lin et al. [33] applied
the method of ALM to solve this convex program. In [26], the
authors proved that the methods mentioned earlier also fit the
revised model (3).

In this paper, we adopt the GoDec algorithm proposed by
Zhou and Tao in [21] to solve the low-rank HSI patch, which
can remove the Gaussian noise more effectively. Before solving
the optimization problem (4) by the GoDec approach, the upper
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bounds of rank(L) and card(S), i.e., the values of r and
k, should be determined. The optimization problem shown in
(4) can be converted to solve the following two subproblems
alternately until convergence:

: 2

L, = arg 7nanr]?(llrll)gr X —L—-S; 1|7 9
— : T

S; = arg carIcrlI(IS%Sr IX — L —S||%. (10)

Bilateral random projection (BRP) [34] based low-rank ap-
proximation is applied to solve the subproblem (9), as it is near
optimal and efficient. Suppose that X is a matrix of size ¢*> x B,
we have Y; = XA, and Yy = XT Ay, wherein A; € RE*"
and A, € R%**" are random matrices, and a fast rank-r BRP

approximation of X is denoted by
L=Y, (ATY,) ' YI. (11)

As for the optimization subproblem (10), S; is updated via
entrywise hard thresholding of X — L, that is to say

£0

3,j€Q

S; = Pa(X —Ly),Q: ’(X - Lt)I,jEQ
and > ‘(X —Ly)

0l <k (12)

The GoDec algorithm [21] described earlier is summarized as
Algorithm 1.

Algorithm 1: GoDec Algorithm

Input: X,r ke
Output: L, S
Initialize: Ly := X, Sg:=0,7t:=0
While |X — L, — 8,|2/|X|[% > edo
t:=t+1;
Y, =(X-S;1)A1L A=Y, Y= (X—-S:1)TAy
If rank(ATY) <7
then r := rank(A1Y), regenerate the matrix A,
and go to the next iteration.
End if
L, = Y(ATY,) YT,
Sy =Pq(X — L), Q is the nonzero subset of the first k
largest entries of | X — Ly|;
End while

IV. EXPERIMENTAL RESULTS AND DISCUSSION

To demonstrate the effectiveness of our restoration method
for hyperspectral imagery, we perform both simulated and
real data experiments, and evaluate the experimental results
quantitatively and visually.

A. Simulated Data Experiment

The Hyperspectral Digital Imagery Collection Experiment
(HYDICE) image of the Washington DC Mall is used in
our simulated experiment. The whole image contains 1208 x
307 pixels and 191 spectral channels. Due to the page lim-
itation, a subimage of size 256 x 256 x 191 is used for our
experiment, which is presented in Fig. 2. Before the simulated
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Fig. 2. HYDICE Washington DC Mall data set used in the simulated exper-
iment (color image composed of bands 60, 27, and 17 for the red, green, and
blue channels, respectively).

process, the gray values of each band of the HSI are normalized
between [0, 1]. After the restoration process, the gray values of
each band are stretched to the original level. In our simulated
experiment, four kinds of noise are added to the Washington
DC image.

1) Zero-mean Gaussian noise is added to all the bands of the
HSI. For different bands, the noise intensity is different.
The SNR value of each band varies from 10 to 20 dB
randomly, and the mean SNR value of all the bands is
14.95 dB.

2) Impulse noise is added to the 11 selected bands from band
20 to band 30. The percentage of impulse noise is 20%.

3) Dead lines are simulated for the four bands from band 70
to band 73. The width of the dead lines is from one line
to three lines.

4) Stripes are simulated for the four bands from band 111
to band 114. The width of the stripes is from one line to
three lines.

The parameters are set as follows: ¢ = 20, which denotes that
each hyperspectral patch is 20 x 20 x 191; the step size is set to
4; and the values of  and k are set to 7 and 4000, respectively.

To thoroughly evaluate the performance of our algorithm,
we select three different noise reduction methods for compar-
ison, i.e., hard-threshold wavelet denoising [37], the SSAHTV
model [8], and video block matching 3-D filtering (VBM3D)
[38]. The wavelet method adopts an adaptive noise estimation
approach with no parameters. The SSAHTV method utilizes
a regularization parameter to balance the fidelity term and the
TV regularization term, which is set to 5 in the simulated
experiments. For the VBM3D method, the noise variation is
set to 15. Before directly applying the VBM3D method to
the mixed noisy bands of Gaussian and impulse noise, an
internal patch matching procedure is utilized to conduct the
preprocessing for supporting impulse noise removal [19].

In this paper, the peak signal-to-noise ratio (PSNR) index and
the structural similarity (SSIM) index [35] are adopted to give a
quantitative assessment of the restoration results. As introduced
in [8], for an HSI, we compute the PSNR and SSIM values
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Fig. 3.

Restoration results in the simulated experiment: (a) Original band 4,
(b) noisy band, (c) wavelet, (d) SSAHTYV, (e) VBM3D, and (f) LRMR.

with each clean band and restored band and then average them.
The average values are then referred to as the mean PSNR
(MPSNR) and mean SSIM (MSSIM) indices. The definitions
of these indices are as follows:

MN
PSNRZ :lo*loglo M N (13)
Zl Zl[ﬂz(x7y)7u1($7y)}2
r= y:
(2,[1,%”@ +O1) (20’uv‘uﬂ. —|—02)
SSIM,; = At it 14
(Mui;-i-/lai?—%-cﬁ) (ou,2+0u,2+Cs) (14
1
MPSNR = 5 Z PSNR; (15)
=1
1 B
MSSIM = 5 Z SSTM,; (16)
1=1

where u; and ; represent the ith bands of the reference image
and the restored image, respectively. f,,, and f;, denote the
average values of image u; and 4;, while o, and o, stand
for the variances, and o4, is the covariance between u; and
u;. Generally speaking, better restoration results are reflected
by higher SSIM and PSNR values.

First, some typical bands of the HSI before and after restora-
tion are presented to give the visual effect. Figs. 3 and 4
show bands 4 and 168 before and after restoration, which
are only contaminated by Gaussian noise with SNR values of
11.27 and 19.56 dB, respectively. By comparing the restoration
results of the four methods, as displayed in Figs. 3 and 4, it
can be observed that the proposed LRMR restoration method

Fig. 4. Restoration results in the simulated experiment: (a) Original band 168,
(b) noisy band, (c) wavelet, (d) SSAHTYV, (e) VBM3D, and (f) LRMR.

performs the best, effectively suppressing the Gaussian noise
and simultaneously keeping the local details of the original
image. While SSAHTV can also remove the Gaussian noise
and preserve the edge information, some local details are lost.
What is more, when the noise level is high, the performance of
SSAHTYV is poor. The restoration results of VBM3D are good
enough for both the low- and high-noise cases, but there is also
some detailed information smoothed and lost. As to the hard-
threshold wavelet restoration results, some parts of the images
are distorted.

Bands 22 and 27 are corrupted with Gaussian noise and
impulse noise, and the restoration results of these two bands
are shown in Figs. 5 and 6, respectively. From Figs. 5 and 6,
it is shown that our proposed LRMR restoration method can
effectively remove the mixed Gaussian noise and impulse noise.
VBM3D can also remove this mixed noise, but the details are
oversmoothed, while the other two methods perform badly and
fail to remove the impulse noise.

Figs. 7 and 8 display the results of removing the hybrid
noise of Gaussian noise and dead lines in bands 71 and 72,
respectively. Figs. 9 and 10 illustrate the restoration results for
the mixed noise of Gaussian noise and stripes in bands 111 and
112, respectively. From Figs. 7-10, it can be clearly observed
that the proposed LRMR method suppresses the Gaussian noise
and simultaneously removes the dead lines and stripes while
preserving the local details of the original image at the same
time. The VBM3D method can remove the Gaussian noise
effectively but performs poorly with the stripes and dead lines.
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Fig. 5. Restoration results in the simulated experiment: (a) Original band 22,  Fig. 7. Restoration results in the simulated experiment: (a) Original band 70,
(b) noisy band, (c) wavelet, (d) SSAHTYV, (e) VBM3D, and (f) LRMR. (b) noisy band, (c) wavelet, (d) SSAHTYV, (e) VBM3D, and (f) LRMR.

Fig. 6. Restoration results in the simulated experiment: (a) Original band 27,  Fig. 8. Restoration results in the simulated experiment: (a) Original band 72,
(b) noisy band, (c) wavelet, (d) SSAHTYV, (e) VBM3D, and (f) LRMR. (b) noisy band, (c) wavelet, (d) SSAHTYV, (e) VBM3D, and (f) LRMR.
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Fig. 9. Restoration results in the simulated experiment: (a) Original band 111,
(b) noisy band, (c) wavelet, (d) SSAHTYV, (e) VBM3D, and (f) LRMR.

Fig. 10. Restoration results in the simulated experiment: (a) Original band
112, (b) noisy band, (c) wavelet, (d) SSAHTYV, (¢) VBM3D, and (f) LRMR.
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Fig. 11. Spectrum of pixel (110, 206) in the restoration results: (a) Original,
(b) noisy, (c) wavelet, (d) SSAHTYV, (¢) VBM3D, and (f) LRMR.

Furthermore, the wavelet method also fails to remove the dead
lines and stripes and loses a lot of the details.

To further compare the performances of all the restoration al-
gorithms, we show the spectral signatures and profiles of some
typical bands before and after restoration. The differences in the
spectral signatures between the noise-free and the restoration
results are calculated [11]. We also use the mean profiles [36]
to show the effectiveness of the four restoration methods for
removing stripes and dead lines.

Fig. 11 shows the spectral signatures of pixel (110, 206),
which belongs to the roof class, and Fig. 12 shows the spectral
signatures of pixel (43, 143), which belongs to the grass class.
The differences in the spectral signatures between the noise-
free spectrum and the restoration results of pixels (110, 206)
and (43, 143) are presented in Figs. 13 and 14, respectively,
in which the vertical axis of the figures represents the digital
number (DN) values and the horizontal axis shows the spectral-
band number. From Figs. 11-14, it can be clearly observed that
the proposed LRMR method produces better spectral signatures
than the other restoration methods, when compared with the
original spectrum.

Figs. 15 and 16 show the horizontal and vertical profiles
of band 71 at pixel (179, 96), respectively. In Fig. 15(b), the
horizontal profile of the noisy image at pixel (179, 96) is a
straight line, which represents a horizontal dead line. Fig. 17
shows the vertical mean profiles of band 70 before and after
restoration. The horizontal axis represents the column number,
and the vertical axis represents the mean DN value of each
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Fig. 12.  Spectrum of pixel (43, 143) in the restoration results: (a) Original,
(b) noisy, (c) wavelet, (d) SSAHTYV, (e) VBM3D, and (f) LRMR.
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Fig. 13. Difference between the noise-free spectrum and the restoration
results of pixel (110, 206): (a) Noisy, (b) wavelet, (¢) SSAHTV, (d) VBM3D,
and (¢) LRMR.

column. As shown in Fig. 17(b), due to the existence of
dead lines, there are rapid fluctuations in the curve. From
Figs. 15-17, it can be observed that the three profiles produced
by the proposed LRMR restoration method are closest to those
of the original HSI.

Finally, the PSNR and SSIM values of each band of the
experimental results with the different restoration approaches
are calculated and displayed in Fig. 18. It can be observed that
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Fig. 14. Difference between the noise-free spectrum and the restoration
results of pixel (43, 143): (a) Noisy, (b) wavelet, (c¢) SSAHTYV, (d) VBM3D,
and (e¢) LRMR.
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Fig. 15. Horizontal profiles of band 71 at pixel (179, 96) before and after
restoration: (a) Original, (b) noisy, (c) wavelet, (d) SSAHTYV, (e) VBM3D, and
(f) LRMR.

the PSNR and SSIM values of almost all the bands obtained by
our method are higher than those of the other three methods.
What is more, for the bands corrupted by Gaussian noise,
impulse noise, dead lines, and stripes, our method can still
achieve results that are as good as that of the other bands that
are contaminated by Gaussian noise only, which indicates the
effectiveness of our method for simultaneously removing the
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Fig. 18. PSNR and SSIM values of each band of the experimental results with
the different restoration methods: (a) PSNR value and (b) SSIM value.
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MPSNR AND MSSIM VALUES OF THE RESTORATION
RESULTS IN THE SIMULATED EXPERIMENT
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Method Wavelet SSAHTV VBM3D LRMR
MPSNR 2923 31.14 35.1259 40.37
MSSIM 0.8108 0.8566 0.9374 0.9843

Fig. 19. HYDICE urban data set used in the real data experiment 1 (color
image composed of bands 2, 103, and 187).

mixed noise. Table I presents the MPSNR and MSSIM values
of the four restoration approaches. The quantitative assessment
results are consistent with the visual evaluations. It is clear that,
in terms of all these indices, our LRMR method outperforms
the other three approaches.

B. Real Data Experiments

In this section, two real-world test data sets are used in our
experiments. One is an urban area HYDICE data set, and the
other is an Earth Observing-1 (EO-1) Hyperion data set.

1) HYDICE Urban Data Set: A HYDICE urban image
is used in our first real data experiment. This HSI can be
downloaded online at http://www.tec.army.mil/hypercube. The
original image is of the size 304 x 304 x 210. As the bands
104-108, 139-151, and 207-210 are seriously polluted by the
atmosphere and water absorption and can provide little useful
information, we remove them, leaving the remaining test data
with a size of 304 x 304 x 189. Fig. 19 shows the color image
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(d

Fig. 20. Restoration results of band 2 in the real data experiment 1: (a) Original, (b) wavelet, (c) SSAHTYV, (d) VBM3D, and (e) LRMR.

Fig. 21.

Restoration results of band 103 in the real data experiment 1: (a) Original, (b) wavelet, (c) SSAHTYV, (d) VBM3D, and (e¢) LRMR.

(d)

Fig. 22. Restoration results of band 187 in the real data experiment 1: (a) Original, (b) wavelet, (c) SSAHTYV, (d) VBM3D, and (¢) LRMR.

(b)

Fig. 23.

by combining bands 2, 103, and 187, which also shows that the
test data are contaminated by stripes and Gaussian noise. In our
first real data experiment for LRMR, the parameters are set as
follows: g = 20, the step size is 4, r = 4, and & = 4000. For the
SSAHTYV method, the regularization parameter is set to 5, and
the noise variation of the VBM3D method is set to 12.

Figs. 20-23 present bands 2, 103, 187, and 189 of the re-
stored result images. It can be clearly observed that the wavelet
method cannot remove the stripes and the VBM3D method
also performs poorly. The SSAHTV method can remove the
stripes to a certain extent but causes the restoration results to
be oversmooth. In Figs. 20-23(d), it can be seen that a lot of

(d)

Restoration results of band 189 in the real data experiment 1: (a) Original, (b) wavelet, (c) SSAHTYV, (d) VBM3D, and (e¢) LRMR.

the image details are lost. With the proposed LRMR restoration
method, the stripes are completely suppressed, and the detailed
information is effectively preserved.

Figs. 24 and 25 show the vertical mean profiles and horizon-
tal mean profiles of band 189 before and after restoration. It
can be seen that the curves in Figs. 24(a) and 25(a) show rapid
fluctuations, due to the existence of stripes. After the restoration
processing, the fluctuations are suppressed to a certain extent.
However, the VBM3D and wavelet methods fail to restore the
image in some regions, as shown in Fig. 24. Compared to the re-
sults of SSAHTYV, our method provides smoother curves, which
indicates that the stripes have been removed more effectively.
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Fig. 24. Vertical mean profiles of band 189 in the real data experiment 1: (a) Original, (b) wavelet, (c) SSAHTYV, (d) VBM3D, and (e) LRMR.
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Fig. 25. Horizontal mean profiles of band 189 in the real data experiment 1: (a) Original, (b) wavelet, (c) SSAHTYV, (d) VBM3D, and (e) LRMR.

oversmooth, and many details of the original image are lost.
The results shown in Figs. 27-29(d) indicate that our method
performs the best, completely removing the stripes and dead
lines and effectively preserving most of the local details.

Figs. 30 and 31 display the vertical mean profiles of bands
68 and 148 before and after restoration, respectively. The rapid
fluctuations in Figs. 29(a) and Figs. 30(a) suggest the existence
of stripes and dead lines in bands 68 and 148. From all the
restored vertical mean profiles, it can be observed that the
LRMR restoration method gives the best restored results with
regard to the removal of dead lines and stripes.

C. Discussion

In all of our simulated and real data experiments, the size
Fig.26. EO-1 Hyperion data set used in the real data experiment 2: (a) Band 1, of the subdata cube is selected as g = 20, and the step size
(b) band 68, and (c) band 148. . .
is set as 4. In fact, the size of the subdata cube ¢ does not
have a large effect on the restoration results of our proposed
2) EO-1 Hyperion Data Set: Our second real data experi- LRMR method. Table II presents the MPSNR and MSSIM
ment adopts an EO-1 Hyperion image as the test image. The values of the results produced by the proposed LRMR method
original image is of size 400 x 1000 x 242 and can be down- with different sizes of subcube ¢. It can be observed that the
loaded online at http://datamirror.csdb.cn/admin/dataEO1Main. LRMR restoration method is quite robust with regard to the
jsp. After removing the water absorption bands, the final test size of the HSI subcube. After the patch size q is determined,
image is cut to the size of 200 x 400 x 166. In our real data we should choose the values of the rank r and the cardinality %
experiment 2, the parameters are set as follows: ¢ = 20, the step  before the LRMR processing. As introduced in Section II, the
size is 4, r = 4, and k = 4000. For the SSAHTV method, the value 7 stands for the number of the pure spectral endmembers
regularization parameter is set to 5, and the noise variation of in the subdata cube, and k represents the upper bound of the
the VBM3D method is set to 10. Many bands of the test image number of pixels polluted by impulse noise, dead lines, and
contain dead lines and stripes, such as the bands 1, 68, and 148 stripes. Fig. 32 presents the quantitative evaluation results of
shown in Fig. 26. different rank r and cardinality % in the simulated experiment.
Figs. 27-29 present the restoration results of bands 1, 68, It can be clearly seen that the results of the proposed LRMR
and 148 by the different restoration methods. The stripes and  restoration method are quite robust with regard to the values of
dead lines in Figs. 27-29(a) are still obvious, which suggests 7 and k£ when they exceed their corresponding optimal values.
that the wavelet method fails to suppress the stripes and dead To study the effect of different numerical approaches on
lines. The SSAHTV and VBM3D methods can only remove the LRMR-based HSI restoration model, the GoDec and ALM
part of the stripes and dead lines, as presented in Figs. 27-29(b) numerical methods are adopted and compared in a simu-
and (c). What is more, the results produced by SSAHTV are lated experiment in terms of PSNR and SSIM quantitative
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Fig. 27. Restoration results of band 1 in the real data experiment 2: (a) Wavelet, (b) SSAHTYV, (c) VBM3D, and (d) LRMR.

Fig. 28.

Restoration results of band 68 in the real data experiment 3: (a) Wavelet, (b) SSAHTYV, (c) VBM3D, and (d) LRMR.

Fig. 29. Restoration results of band 148 in the real data experiment 3: (a) Wavelet, (b) SSAHTYV, (c) VBM3D, and (d) LRMR.

evaluation measures. The parameter of the ALM method is
set empirically, and the optimal value is 0.05. Fig. 33(a) and
(b) presents the PSNR and SSIM values of each band for the
GoDec and ALM methods, respectively, and Table III displays
the MPSNR and MSSIM values of the two approaches. It is
clearly shown that the GoDec method achieves better restora-

tion results, in terms of higher PSNR and SSIM values, which
suggests the advantage of the GoDec method for Gaussian
noise removal in the HSI restoration problem. In addition,
the parameters r and k stand for explicit meanings of the
HSI, which allows the users to determine the parameter values
more easily.
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Fig. 30. Vertical mean profiles of band 68 in the real data experiment 2: (a) Original, (b) wavelet, (c) SSAHTYV, (d) VBM3D, and (e) LRMR.
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TABLE II

MPSNR AND MSSIM VALUES OF THE LRMR RESULTS WITH
DIFFERENT SIZES OF SUBCUBE, WITH THE STEP SIZE BEING 4

8 12 16 20 24 64
MPSNR  39.70 39.72 40.21 40.37 40.25 40.13
MSSIM  0.9725  0.9742 0.9792 0.9843 0.9823 0.9831
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Fig. 32. Restoration results under different values of the rank r and cardi-
nality k.
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Vertical mean profiles of band 148 in the real data experiment 3: (a) Original, (b) wavelet, (c) SSAHTYV, (d) VBM3D, and (e) LRMR.

TABLE III
MPSNR AND MSSIM VALUES OF THE RESTORATION RESULTS
IN THE SIMULATED EXPERIMENT VIA DIFFERENT
LRMR NUMERICAL APPROACHES

Method ALM GoDec
MPSNR 38.467 40.37
MSSIM 0.9824 0.9843

Finally, the computational complexity of our method is dis-
cussed. As shown in [21], the GoDec algorithm is an iterative
algorithm. For a matrix of size ¢? x B, each iteration step of
the GoDec algorithm needs O(q? x B x r) flops. Then, for
each subcube of the HSI, ' x O(q? x B x r) flops are needed,
where 7' is the number of the iteration steps.

V. CONCLUSION

In this paper, we have proposed an LRMR-based HSI restora-
tion method. By lexicographically ordering the 3-D cube into
a 2-D matrix representation, the HSI restoration problem is
transformed to an LRMR problem, on the basis of the low-rank
property of the clean HSI. The GoDec algorithm is then applied
to solve the LRMR-based HSI restoration model. The main
advantage of the LRMR restoration algorithm is that all the
Gaussian noise, impulse noise, dead lines, and stripes are taken
into consideration. One simulated experiment and two real data
experiments were conducted. The experimental results confirm
that our proposed HSI restoration method can effectively and
simultaneously remove the mixed noise of Gaussian noise,
impulse noise, dead lines, and stripes. In addition, the proposed
method is quite robust and stable with regard to noise types and
parameter settings, which improves the potential of the practical
application in HSI processing.

Nevertheless, the proposed algorithm still has room for im-
provement. There is no spatial constraint imposed on the neigh-
boring pixels of the HSI, which may cause an unsatisfactory
performance for very large areas of missing pixels. This is a
drawback of the method that needs to be overcome in the future.
In addition, the adaptive determination of rank r and cardinality
k needs to be addressed in our further work.
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